Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36169060

RESUMO

The gastrointestinal system of fish reacts rapidly to food deprivation. The relative masses of digestive organs and activities of digestive enzymes decrease within days of fasting. This is believed to be an energy-conserving strategy as the metabolic cost of maintaining digestive capacity is high. Cortisol is known for its role in energy mobilization following stress exposure, and prolonged elevated cortisol levels have been shown to reduce growth rates in fish. Fish experiencing chronic cortisol elevations show structural changes to their digestive tissues and overall reductions in relative digestive tissue masses. In fish fasting for prolonged periods, circulating cortisol levels have been reported to be downregulated, upregulated, or unchanged compared to feeding fish. This study aimed to investigate if RU486 and spironolactone, antagonists of the glucocorticoid receptor (GR), and mineralocorticoid receptor (MR), respectively, alone or in combination affect circulating cortisol levels during prolonged starvation. In addition, we tested the effects of blocking GR and MR, on the down-regulation of relative digestive tissue mass during starvation, and its effects on weight loss. Three treatment groups of rainbow trout were intraperitoneally implanted with either GR, MR, or GR and MR blockers. A fourth group was implanted with cortisol, while a fifth group served as a control. All treatment groups were sampled over a course of four weeks of food deprivation and compared against each other and fed control fish at day 0 of the trial. Starvation for 2 weeks and longer significantly increased circulating cortisol levels in all groups except for the group implanted with GR and MR antagonists. Loss of body mass occurred most rapidly during the first week of starvation. Spironolactone treatment resulted in significantly reduced loss of mass during the first week, however, over the following weeks, no differences in mass loss were observed in the groups implanted with blockers, while cortisol-treated fish showed the highest decrease in body mass over time. Relative digestive tissue mass decreased in all groups but apparently, the fasting-induced elevation in plasma cortisol levels did not affect the relative weight loss of digestive tissues as no differences were observed between control fish and GR + MR antagonist treated fish. Very high cortisol levels caused by cortisol treatment however caused a faster decrease in the relative mass of some digestive organs, particularly the stomach.


Assuntos
Oncorhynchus mykiss , Receptores de Mineralocorticoides , Animais , Jejum , Glucocorticoides/metabolismo , Hidrocortisona , Mifepristona/farmacologia , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Oncorhynchus mykiss/fisiologia , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Espironolactona/metabolismo , Espironolactona/farmacologia , Redução de Peso
2.
J Exp Biol ; 225(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35403681

RESUMO

Fish perform rapid escape responses to avoid sudden predatory attacks. During escape responses, fish bend their bodies into a C-shape and quickly turn away from the predator and accelerate. The escape trajectory is determined by the initial turn (stage 1) and a contralateral bend (stage 2). Previous studies have used a single threat or model predator as a stimulus. In nature, however, multiple predators may attack from different directions simultaneously or in close succession. It is unknown whether fish are able to change the course of their escape response when startled by multiple stimuli at various time intervals. Pacific staghorn sculpin (Leptocottus armatus) were startled with a left and right visual stimulus in close succession. By varying the timing of the second stimulus, we were able to determine when and how a second stimulus could affect the escape response direction. Four treatments were used: a single visual stimulus (control); or two stimuli coming from opposite sides separated by a 0 ms (simultaneous treatment), 33 ms or 83 ms time interval. The 33 ms and 83 ms time intervals were chosen to occur either side of a predicted 60 ms visual escape latency (i.e. during stage 1). The 0 ms and 33 ms treatments influenced both the escape trajectory and the stage 1 turning angle, compared with a single stimulation, whereas the 83 ms treatment had no effect on the escape trajectory. We conclude that Pacific staghorn sculpin can modulate their escape trajectory only between stimulation and the onset of the response, but the escape trajectory cannot be modulated after the body motion has started.


Assuntos
Perciformes , Animais , Reação de Fuga/fisiologia , Peixes , Perciformes/fisiologia , Comportamento Predatório
3.
Artigo em Inglês | MEDLINE | ID: mdl-34678496

RESUMO

Chronic elevation of circulating cortisol is known to have deleterious effects on fish, but information about the consequences of prolonged cortisol elevation on the metabolism of fish is scarce. To test the effects of chronic cortisol elevation on the aerobic performance of rainbow trout, we examined how two severities of chronically elevated plasma cortisol levels affected the oxygen uptake during rest and after exhaustive exercise using a high (HC) and a medium cortisol (MC) treatment. High cortisol doses significantly affected standard (SMR) and maximum metabolic rates (MMR) compared to control fish. In comparison, the medium cortisol treatment elevated maximum metabolic rates (MMR) but did not significantly influence SMR compared to a sham group (S) and control group (C). The medium cortisol treatment resulted in a significantly increased metabolic scope due to an elevation of MMR, an effect that was abolished in the HC group due to co-occuring elevations in SMR. The elevated SMR of the HC-treated fish could be explained by increased in vitro oxygen uptake rates (MO2) of specific tissues, indicating that the raised basal metabolism was caused, in part, by an increase in oxygen demand of specific tissues. Haematological results indicated an increased reliance on anaerobic metabolic pathways in cortisol-treated fish under resting conditions.


Assuntos
Hidrocortisona/metabolismo , Oncorhynchus mykiss/metabolismo , Anaerobiose/efeitos dos fármacos , Animais , Metabolismo Basal/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Hidrocortisona/administração & dosagem , Hidrocortisona/sangue , Redes e Vias Metabólicas/efeitos dos fármacos , Oncorhynchus mykiss/sangue , Consumo de Oxigênio/efeitos dos fármacos , Esforço Físico , Distribuição Tecidual
4.
Artigo em Inglês | MEDLINE | ID: mdl-33857591

RESUMO

The Nile tilapia (Oreochromis niloticus) is widely farmed in tropical and subtropical pond culture. O. niloticus is recognized as a species that is tolerant of hypoxic conditions, a trait that may largely be responsible for the success of this species in aquaculture. Until now, neither coping mechanisms nor a comparison of various indices of hypoxia tolerance to characterize the response to hypoxia, have been described. In the present study, Nile tilapia were subjected to hypoxia of increasing severity and duration to examine effects on metabolic rate (MO2) and post hypoxic oxygen debt. MO2 was measured during periods of severe hypoxia at 2.1 kPa O2 (10% oxygen saturation) lasting between 2 and 24 h at 27 °C. Hypoxia tolerance was assessed by determining the critical oxygen tension (Pcrit) and the pO2 at which loss of equilibrium (LOE) occurred. We show that the tolerance of Nile tilapia to severe hypoxia is largely achieved through a capacity for metabolic depression. Despite prolonged exposure to dissolved oxygen levels below Pcrit, the fish showed little excess post-hypoxic oxygen consumption (EPHOC) upon return to normoxic conditions. LOE did not occur until conditions became near-anoxic. Blood pH was not affected by severe hypoxia (2.1 kPa O2), but a significant acidosis occurred during LOE, accompanied by a significant elevation in lactate and glucose levels. The results from the present study indicate that Nile tilapia do not switch to anaerobic metabolism during hypoxia until pO2 falls below 2.1 kPa.


Assuntos
Ciclídeos/metabolismo , Hipóxia/metabolismo , Consumo de Oxigênio/fisiologia , Saturação de Oxigênio , Acidose/metabolismo , Adaptação Psicológica , Anaerobiose , Animais , Aquicultura , Glicemia/análise , Brânquias/metabolismo , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Masculino , Oxigênio/metabolismo , Análise de Regressão , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA